A Posteriori Error Estimates for the Generalized Overlapping Domain Decomposition Methods
نویسندگان
چکیده
A posteriori error estimates for the generalized overlapping domain decomposition method GODDM i.e., with Robin boundary conditions on the interfaces , for second order boundary value problems, are derived. We show that the error estimate in the continuous case depends on the differences of the traces of the subdomain solutions on the interfaces. After discretization of the domain by finite elements we use the techniques of the residual a posteriori error analysis to get an a posteriori error estimate for the discrete solutions on subdomains. The results of some numerical experiments are presented to support the theory.
منابع مشابه
Asymptotic behavior and a posteriori error estimates in Sobolev space for the generalized overlapping domain decomposition method for evolutionary HJB
A posteriori error estimates for the generalized overlapping domain decomposition method with Dirichlet boundary conditions on the boundaries for the discrete solutions on subdomains of evolutionary HJB equation with nonlinear source terms are established using the semi-implicit time scheme combined with a finite element spatial approximation. Also the techniques of the residual a posteriori er...
متن کاملCFD PPLTMG Using A Posteriori Error Estimates and Domain Decomposition
Abstract. This two-part paper examines two approaches for mesh adaptation, using combinations of a posteriori error estimates and domain decomposition. In the first part, we consider a domain decomposition method applied to the generalized Stokes problem, with mesh adaptation in each subdomain using the a posteriori local error estimator as adaptation indicator. We apply domain decomposition wi...
متن کاملEquivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کاملA posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation
In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کاملNumerical Analysis and Adaptive Computation for Solutions of Elliptic Problems with Randomly Perturbed Coefficients
We develop a reliable efficient method for computing solutions to the Poisson equation a with randomly perturbed coefficient. We assume the perturbation to be piecewise constant and use a non-overlapping domain decomposition algorithm, where the domains coincides with regions where the perturbation is constant, to solve the equations. On each sub-domain we use an truncated Neumann series to app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012